

aevatar.ai

A Pioneer of the Next-Gen Multi-

Agent AI Framework

Release Date: February 07, 2025

Version: V0.1

 2

Table of Contents

Abstract.. 4

1. Introduction .. 4
Key Points: ... 5

2. Background & Challenges ... 6

2.1 AI Agent System Isolation .. 6

2.2 Limitations of Single LLM ... 6

2.3 Insufficient Retrieval-Augmented Generation (RAG) Accuracy ... 6

2.4 Lack of Event Tracing and Observability ... 7

2.5 High Deployment and Collaboration Costs .. 7

3. Vision & Goals ... 7

3.1 aevatar Framework ... 8

3.2 aevatar Applications.. 8

3.3 Environment (Web 2 / Web 3).. 9

3.4 LLMs Integration .. 9

3.5 Data & Messaging ... 9

3.6 Deployment & DevSecOps .. 9

3.7 Multi‐Cloud & Security .. 10

3.8 Putting It All Together .. 10

3.9 aevatar Advantages ... 10
1. Multi-Agent Collaboration .. 10
2. Unified Cross-Model Collaboration ... 11
3. Multi-Agent RAG Architecture .. 11
4. Visualisation and Ease of Use .. 12
5. Security and Scalability ... 13

4. Architecture .. 14

4.1 aevatar Framework ... 14
Design Principles ... 15

4.2 Core Components Overview... 16
Actor Model ... 16
GAgent ... 16
Event Sourcing .. 16
CQRS (Command Query Responsibility Segregation).. 16
aevatar Dashboard .. 16

4.3 GAgent Multi-Agent Collaboration Model ... 17

4.4 Multi LLMs Orchestration ... 17

4.5 Cloud-Native Deployment and Security Compliance .. 17
Kubernetes Deployment ... 18
DevSecOps & GitOps.. 18

 3

Security Policies... 18

5. Technical Implementation Details .. 18

5.1 Orleans Actor Model and Scalability .. 19

5.2 GAgentBase Design and Event-Driven Architecture ... 20

5.4 Observability and Monitoring .. 21

6. Key Features ... 21

6.1 Multi-Model Parallel Processing/Dynamic Switching ... 21

6.2 Advanced Task Orchestration and Collaboration ... 21

6.3 RAG Integration .. 21

6.4 Cross-Platform Extension ... 21

6.5 Developer and Non-Developer Friendly .. 22

7. Use Cases .. 22

7.1 Multi-Agent Collaboration/Automation.. 22
Customer Agents ... 22
Employee Agents ... 23
Code Agents ... 23
Data Agents .. 23
Security Agents .. 23
Creative Agents ... 23

7.2 Social Media Agents .. 24

7.3 Industry Agents in Blockchain, Finance, Manufacturing ... 25

8. The Current AI Framework Landscape .. 27

8.1 Comparison: aevatar.ai vs. ElizaOS vs. G.A.M.E .. 27

8.2 Technical and Business Value .. 29

9. Roadmap ... 31

9.1 Short-Term Plan .. 31

9.2 Long-Term Plan .. 31
Enhanced Vector Retrieval (RAG) Capabilities .. 31
Enhanced Agent Plugin Marketplace ... 32
Service Mesh and Zero Trust Security ... 32
Human Feedback Mechanism.. 32
Enhanced Trusted Execution Environments (TEEs) .. 32
Boundless Agent Collaboration ... 32

10. Conclusion ... 32

11. Reference .. 33

 4

Copyright © aevatar.ai Team

Scope: This white paper is intended for users, developers, and potential partners interested in

multi-agent platforms. It provides a thorough overview of aevatar.ai’s design philosophy,

technical framework, and typical use cases.

Abstract

This white paper presents aevatar.ai, a unified multi-agent platform that addresses the

complexities inherent in developing, deploying, and managing diverse AI agents across varied

domains and workloads. Leveraging a plugin-based approach and flexible deployment

strategies—ranging from DLL-based loading to containerised and distributed actor

frameworks—aevatar.ai allows users and developers to seamlessly integrate specialised AI

solutions under a single ecosystem.

Key components include the aevatar Framework, which defines standardised agent interfaces

and lifecycle management; aevatar Station, a centralised portal and marketplace for agent

discovery, plugin handling, request routing, and user access control; and aevatar Agents, a

repository of official and community-developed AI modules supporting an array of tasks, such as

natural language understanding, computer vision, and recommendation systems. By centralising

agent interactions and event flows, aevatar.ai reduces integration overheads, enforces consistent

security policies, and provides robust monitoring and logging for higher reliability.

Through its open-source, modular architecture, aevatar.ai caters to both small-scale

experiments and large enterprise deployments, supporting features like high concurrency, auto-

scaling, agent reusable, sandboxing, and audit trails. These innovations foster a sustainable AI

ecosystem in which organisations can rapidly adopt and evolve advanced AI capabilities, while

developers focus on creating powerful, specialised agents without the complexities of

infrastructure and lifecycle management.

1. Introduction

With the rapid development of artificial intelligence (AI) technology, the applications of Large

Language Models (LLMs) and intelligent agents have evolved from single question-answer

interactions to higher-level capabilities such as multi-agent collaboration, cross-model

cooperation, and complex business process orchestration.

However, current AI systems on the market generally face issues such as platform isolation,

model limitations, complex deployment, and lack of observability, making it difficult to meet

enterprise users' demands for efficient, flexible, and secure AI collaboration.

https://aevatar.ai/
https://aevatar.ai/
https://aevatar.ai/
https://aevatar.ai/

 5

aevatar.ai, a pioneer of the next-gen multi-agent AI framework, aims to build a cross-

platform, cross-model AI agent ecosystem. Through open architecture, powerful visual

orchestration capabilities, and cloud-native deployment methods, it empowers developers and

business users to uniformly manage, schedule, and coordinate multiple intelligent agents within a

single system, achieving efficient collaboration across 'multiple scenarios, multiple models, and

multiple roles'.

With aevatar.ai, we are committed to providing a flexible, scalable, and security-compliant AI

solution to promote the widespread application and implementation of AI technology.

Key Points:

1. Agent-to-Agent Interactions: Enables seamless collaboration between AI agents to

automate workflows.

2. Scalable Framework: aevatar.ai provides a modular and scalable infrastructure for

launching and managing AI agents effortlessly.

3. Custom Agents: Users can design and deploy personalised agents without coding,

tailored to specific business needs.

4. Industry-Leading LLMs: Powered by top language models like OpenAI, Deepseek,

Claude, and Gemini, it offers diverse problem-solving capabilities.

5. Industry-Specific Integrations: aevatar.ai empowers businesses in all industries, like

finance, manufacturing, and beyond to simplify workflows, automate complex tasks, and

achieve cross-ecosystem interoperability with minimal friction. it combines scalability,

flexibility, and cutting-edge AI to drive innovation across industries.

https://aevatar.ai/

 6

6. Blockchain Interoperability: Supports AI agents to communicate across multiple

blockchain ecosystems.

2. Background & Challenges

2.1 AI Agent System Isolation

Currently, many AI agents are isolated within their respective platforms, lacking unified

communication protocols and interoperability. This lack of interoperability limits the overall

effectiveness of AI systems, especially in scenarios requiring cross-platform collaboration.

2.2 Limitations of Single LLM

Most AI agents rely on a single language model (such as GPT-4 or Llama2). This presents a

concentration risk; performance can be compromised when facing complex multi-step tasks or

multilingual scenarios.

The limitations of a single LLM model prevent systems from flexible switching or parallel usage

of multiple models, thus restricting their application scope and performance.

2.3 Insufficient Retrieval-Augmented Generation (RAG)

Accuracy

Most AI agents use retrieval-augmented generation to retrieve information from a specialised

knowledge base, but it is challenging to achieve perfect knowledge base refinement and accuracy

as the information and documents might be irrelevant, outdated, or low-quality.

 7

2.4 Lack of Event Tracing and Observability

Existing AI systems often lack source management for AI agent internal states and historical

interactions. When system failures or reasoning anomalies occur, it is difficult to locate problems

and replay events, increasing maintenance complexity and risks.

2.5 High Deployment and Collaboration Costs

Traditional AI systems typically require complex installation, configuration, and maintenance

processes. The lack of user-friendly workflow orchestration tools, especially in multi-agent

collaboration scenarios, leads to high development and maintenance costs.

3. Vision & Goals

aevatar.ai is designed to support the development and deployment of AI agents while resolving

the above challenges. It leverages a combination of open architecture, powerful orchestration

capabilities, and cloud-native deployment to create a robust, scalable, and efficient system.

https://aevatar.ai/

 8

3.1 aevatar Framework

aevatar framework represents the core of aevatar.ai, and enables it to handle essential processing

logic, agent interactions, and core components.

Orleans “Grains” as Agents

• Orleans uses the concept of grains—lightweight, isolated micro‐objects—to represent

actors or “agents.”

• Clusters of silos (the runtime hosts in Orleans) coordinate these grains so they can be

distributed and scaled across many servers.

• In this architecture, each grain is effectively an agent (often shown as “GAgent”).

Multi‐Agent

• The diagram shows multi‐layered agent groupings. For instance, a “Publishing GAgent”

coordinate several “Group Member GAgent” instances.

• Event handlers manage asynchronous triggers or state changes, enabling agents to

respond in real-time to inbound data or updates from other agents.

AI Integration

• Semantic Kernel provides advanced AI orchestration and prompt‐chaining capabilities.

By combining all the above, the system can scale out large numbers of AI agents, each with

specialised tasks, while also coordinating them in groups or sub‐groups to accomplish more

complex, collaborative goals.

3.2 aevatar Applications

• Marketplace: A centralised platform where various AI agents can be discovered,

developed, managed, and deployed.

• Agents: Individual AI agents that perform specific tasks or functions. These agents can

be developed and deployed independently.

• Webhook: aevatar can seamlessly orchestrate a large number of external inputs,

converting real‐world triggers into structured events that G‐agents can handle, thus

enabling continuous, real‐time interaction with a variety of external systems.

Example Agents:

• Twitter Agent: Monitors tweets, posts updates, or interacts with Twitter.

• Telegram Agent: Works with Telegram for chat interactions.

• Coding Agent: Helps generate or review code.

• Marketing Agent: Performs marketing tasks such as campaign management.

• Operating Agent: Handles operational tasks.

• aelf Agent: Leverages aelf on-chain, off-chain data to perform automated tasks.

https://aevatar.ai/

 9

These represent end‐user‐facing “products” built on top of the underlying multi‐agent

framework. Each of these agents can have specialised logic, connect to external APIs, and

leverage the core aevatar engine.

3.3 Environment (Web 2 / Web 3)

This indicates the broader context in which aevatar agents operate—both in traditional Web 2.0

environments (e.g., REST APIs, SaaS services) and Web 3.0 contexts (e.g., blockchain or

decentralised services). The framework is designed to plug into these ecosystems seamlessly.

3.4 LLMs Integration

On the right side of the diagram, you see major LLM (Large Language Model) providers:

• OpenAI / ChatGPT

• Anthropic

• Meta

• Azure OpenAI

• Deepseek

• And more…

These LLMs are integrated through the Semantic Kernel connectors, so each agent can leverage

natural language understanding, generation, and advanced reasoning.

3.5 Data & Messaging

Above the framework, we see core data and messaging technologies:

• Kafka: Real‐time messaging and event streaming

• MongoDB: Document‐based or general data storage

• Elasticsearch: Full‐text search and analytics at scale

• Redis: In‐memory data store for caching and high‐speed access

• Qdrant: Referring to specialised vector stores

These technologies enable high‐throughput data ingestion, search, caching, and state

management—critical for large‐scale agent interactions.

3.6 Deployment & DevSecOps

DevSecOps used to build, deploy, and manage the aevatar framework:

• Kubernetes + Docker: Containerisation and orchestration across clusters.

• GitHub Actions, GitOps, Argo: CI/CD pipelines and “GitOps” ‐ style deployment for

automated, versioned releases.

 10

• The “DevSecOps” loop highlights security‐focused continuous integration/continuous

deployment practices.

3.7 Multi‐Cloud & Security

Finally, there is a multi‐cloud strategy across:

• Google Cloud Platform, Amazon Web Services, Microsoft's Azure and others –

Cloud providers are supported for deployment.

• Additional tooling for security and observability, such as Grafana (monitoring

dashboards), Vault (secrets management), Elasticsearch/Fluentd/Kibana (EFK stack

for logs and analytics), and so on.

This ensures the platform can run in a secure, fault‐tolerant, and cost‐efficient way across

different cloud infrastructures.

3.8 Putting It All Together

• Each aevatar application (like a Twitter Agent or Coding Agent) is an Orleans “grain” (or

set of grains) wrapped in specialised logic.

• The Multi‐Agent or “grouping” approach coordinates large collections of these grains,

allowing them to pass events/messages among themselves through Kafka, Redis, or direct

Orleans messaging.

• Semantic Kernel helps orchestrate more advanced AI reasoning, prompt chaining, and

memory/knowledge.

• The entire setup is packaged for cloud deployment (Kubernetes + Docker) and integrated

with logging, security, and monitoring solutions (Grafana, Vault, EFK).

• This combination provides a scalable, fault‐tolerant, and highly extensible platform to run

AI agents across multiple domains—Web 2 and Web 3, on multiple clouds, with robust

security and observability.

In short, aevatar.ai is a full‐stack, cloud‐native, multi‐agent orchestration framework that

leverages Orleans for actor‐based scaling, integrates with Semantic Kernel for AI functionality,

and utilises a comprehensive DevSecOps pipeline plus multi‐cloud deployment strategy.

3.9 aevatar Advantages

1. Multi-Agent Collaboration

 11

GAgent: grain-based Agent

Through a distributed actor model (based on Orleans) and multi-agent management mechanism,

aevatar.ai achieves efficient interconnection and complex event scheduling between multiple AI

agents, supporting cross-platform and cross-scenario collaborative workflows.

aevatar.ai’s multi-agent framework divides AI agents into different functional roles. It assigns

specific responsibilities and groups multiple agents to ply various niches within a system,

thereby completing user-assigned tasks from a systemic perspective.

2. Unified Cross-Model Collaboration

aevatar.ai provides a multi-language model parallel agent framework. This overcomes the

limitations of single models and supports free switching or parallel use of multiple models in

different tasks, thereby enhancing system flexibility and performance.

3. Multi-Agent RAG Architecture

https://github.com/dotnet/orleans
https://aevatar.ai/

 12

Under the multi-agent RAG architecture, each AI agent represents a customised RAG based on

specific knowledge bases, retrieval strategies, and generation configurations; this provides

answers in the entire system's most proficient domain.

Through the orchestrator, user questions are allocated to appropriate agents. Multiple agents can

also be called in parallel, and answers are consolidated through the information integration

module. This achieves a more professional, comprehensive, and scalable question-answering or

information-generation system.

The multi-agent RAG model enables:

1. Flexible expansion: Quick deployment of new agents based on different business lines or

knowledge domains.

2. Noise reduction: Utilising domain-specific knowledge bases to reduce irrelevant

information interference.

3. Enhanced credibility: Cross-verification between multiple agents.

4. Sustainability: Independent maintenance of each agent's knowledge base, facilitating a

divide-and-conquer approach.

This enables the building of a multi-agent RAG platform capable of consistently producing high-

quality content.

4. Visualisation and Ease of Use

 13

The aevatar.ai dashboard provides low-code/no-code visual orchestration tools, helping users

easily design and monitor complex workflows. This is a significant step in lowering technical

barriers so that just about anyone can quickly get started in creating and personalising AI agents.

5. Security and Scalability

 14

Based on the cloud-native DevSecOps and microservice architecture, aevatar.ai provides elastic

scaling and high concurrency processing capabilities, while ensuring system security and

compliance.

With that, it meets enterprise-level user requirements.

4. Architecture

aevatar.ai comprises three primary components:

• aevatar Framework

• aevatar Station

• aevatar Agents

They synergies to manage the entire lifecycle of multiple AI agents—from creation to

deployment and ongoing operation.

4.1 aevatar Framework

aevatar Framework is designed to support AI agents and event sourcing mechanisms,

providing a modular architecture for extensibility and maintainability. It leverages design

patterns such as Dependency Injection and Observer Pattern to enhance flexibility and

scalability.

https://aevatar.ai/

 15

Design Principles

• Modularity: The framework is designed to be modular, allowing developers to add or

remove components as needed.

• Extensibility: New features can be added through plugins without altering the core

framework.

 16

• Separation of Concerns: Each component has a specific responsibility, promoting

maintainability and readability.

The framework provides a flexible architecture for developing AI agents and event sourcing

applications, allowing for easy integration and extension through its modular design. By

adhering to design principles and patterns, the framework ensures that it remains scalable and

maintainable as new features are added.

4.2 Core Components Overview

Actor Model

• Responsible for managing distributed actor (Grain) lifecycle and communication,

providing a stateful and replayable execution environment for each agent, ensuring high

concurrency and scalability for the system.

GAgent

• Each submodule (such as Telegram, Twitter, MicroAI, SocialAgent, etc.) is an

independent GAgent, implementing specific agent logic for different platforms or

scenarios, supporting cross-platform expansion.

Event Sourcing

• Provides core functionality for log storage, event replay, and snapshot management. This

supports multiple backend storage options like MongoDB and Redis, and ensures system

traceability and audit capabilities.

• All critical agent events (i.e. received messages, state updates, model inference outputs)

can be persisted, providing replay and audit capabilities.

CQRS (Command Query Responsibility Segregation)

• Externally provides REST/gRPC interfaces and supports efficient internal data querying

and indexing through read-write separation architecture. Combined with solutions like

Elasticsearch, it enables fast retrieval of large-scale data.

• Read-write separation: The system can handle agent state change write requests

(events) independently from external query interfaces.

• Combined with Elasticsearch/MongoDB for rapid retrieval and multi-dimensional

queries.

aevatar Dashboard

• Graphical management tool allowing users to configure multi-agent collaboration

processes, monitor event flows, and edit business logic through low-code/no-code

 17

approaches. This significantly reduces development barriers, especially for non-technical

users.

4.3 GAgent Multi-Agent Collaboration Model

• Adopts GAgentBase<TState, TEvent> as an abstract base class, where agents can inherit

and implement their own business processing methods.

• GAgent: Manages subscription, message routing, and event coordination for multiple

agents within a group, enabling broadcast, point-to-point, or tree-based event

transmission within the group.

4.4 Multi LLMs Orchestration

• Multi-Pronged Approach: Incorporates access to multiple LLMs (GPT-4, Claude,

Llama2, etc.) through 'AIService' and Semantic Kernel mechanisms.

• Scheduling Strategy: Dynamically decides which model(s) to call based on task type,

resource cost, complexity, and other dimensions.

• Model Adaptation Layer: Connect to more third-party or private models at the

framework level, providing enterprises with customised multi-language model

management.

4.5 Cloud-Native Deployment and Security Compliance

 18

Kubernetes Deployment

• Orleans Silo and agent services can be containerised, supporting automatic scaling

(HPA), service discovery, and elastic load balancing.

DevSecOps & GitOps

• Provides container image security scanning, CI/CD integration, and Infrastructure as

Code (IaC) deployment, ensuring application security and traceability.

Security Policies

• Authentication through AuthServer and OAuth/OpenID systems, supporting multi-

tenancy and RBAC (Role-Based Access Control).

5. Technical Implementation Details

The Overall Flow:

1. User → aevatar GAgent: User’s message or command is captured.

2. GAgent → aevatar Framework: A structured event is passed to the framework (Multi-

Agent Collaboration and AI interactions).

3. aevatar Framework → Core Logic with RAG and LLM: The RAF and LLM interpret

the request.

4. Core Logic with RAG and LLM → External services or Knowledge / Memory:

Retrieve data or call specialised actions.

5. aevatar Framework → Output Proxy: Final output is formatted and prepared.

6. Output → GAgent → User: The user receives the response.

 19

The Detailed Flow:

• Agent Creation & Initialisation: The client asks GAgentFactory to create an agent,

which initialises state with StateLogEventStorage and sets up subscriptions via

StreamProvider.

• Event Publishing & Handling: The client (or other systems) publishes events to the

agent, which appends them to the event storage, updates its in‐memory state, and

publishes them to an external stream if necessary.

• State Recovery: When needed, the agent retrieves a snapshot, and any subsequent events

from the storage will apply all the changes, ending up with an up‐to‐date state.

Notable Features & Benefits

• Multi-Agent Collaboration: The system can split complex tasks into smaller specialised

subtasks, each handled by an appropriate Agent.

• Dynamic Flow: Agents are activated and invoked on-demand (virtual actor model),

allowing for concurrency or parallel calls in scenarios where tasks can be split up.

• Integration with External Services: Knowledge modules can seamlessly incorporate

real-time data, domain documents, or advanced processing capabilities.

• Retrieval-Augmented Generation (RAG): Agents can consult a vector database or

memory store, enhancing the LLM or other logic with up-to-date contextual data.

• Scalability & Extensibility: Each component can be scaled horizontally, and new

Agents or Tools can be introduced without major architectural changes.

5.1 Orleans Actor Model and Scalability

• Distributed Actor

 20

o Each agent acts as a Grain, storing its own state and event history. Orleans

handles scheduling and message passing, eliminating the need for manual

management of concurrent locks and network communication.

• Horizontal Scalability

o When the system needs to handle more conversations or higher concurrency,

adding Silo nodes can expand agent instances and automatically balance loads.

5.2 GAgentBase Design and Event-Driven Architecture

• GAgentBase<TState, TStateLogEvent>

o Inherits JournaledGrain<TState, StateLogEventBase<TStateLogEvent>>,

naturally possessing event sourcing capabilities.

o Methods like PublishToAsync/SubscribeToAsync allow agents to freely combine

and interact, forming many-to-many or multi-level event flow topologies.

• EventWrapper

o Adds metadata such as ID, timestamp, and context to all events, facilitating audit

and debugging, and avoiding traditional 'black box AI' problems.

5.3 Low-Code/No-Code Orchestration and Visualisation

Drag-and-Drop Process Design

 21

• Users can drag agent nodes, configure event routing, and set model strategies on the

dashboard without writing complex backend code.

Real-time Monitoring and Log Replay

• Integrates Event Sourcing logs, allowing viewing of event sequences or agent states at

any moment through the aevatar Dashboard, assisting with business optimisation and

maintenance troubleshooting.

5.4 Observability and Monitoring

• Distributed Tracing

o Integrates with OpenTelemetry, Jaeger, or Zipkin for visualised tracking of cross-

Agent/Grain call chains.

• Metrics and Alerts

o Collects system metrics (QPS, latency, error rates, etc.) and implements real-time

alerts based on Prometheus/Grafana.

• Orleans Dashboard

o Optional built-in Orleans Dashboard showing runtime data such as Grain

activation counts and message processing rates.

6. Key Features

6.1 Multi-Model Parallel Processing/Dynamic Switching

• Automatically (with a manual option) switches between different LLMs based on

business requirements.

• Able to assign multiple models to handle subtasks simultaneously and merge results.

6.2 Advanced Task Orchestration and Collaboration

• GAgent provides event-based collaboration mechanisms, allowing multiple agents to

handle complex business processes in parallel.

6.3 RAG Integration

• Connects with vector databases/document search engines, enabling agents to retrieve and

generate answers from large-scale knowledge bases.

6.4 Cross-Platform Extension

• Plugin-based integration with Telegram, X, Slack, and more, quickly building multi-

channel chat/communication scenarios.

 22

6.5 Developer and Non-Developer Friendly

• For developers: Provides programmable Plugin framework.

• For non-technical personnel: Dashboard low-code/no-code management for quick

onboarding.

7. Use Cases

7.1 Multi-Agent Collaboration/Automation

• Multi-Department Agents:

Customer Agents

• Functions:

o Automate customer support responses via chat or email.

o Provide product recommendations based on user behavior.

o Handle order tracking, refunds, and inquiries.

o Proactively follow up with customers for feedback or promotions.

• Example: A customer agent resolves FAQs about delivery delays or provides

real-time product recommendations.

 23

Employee Agents

• Functions:

o Manage HR workflows like leave requests, payroll queries, and benefits

explanations.

o Assist with onboarding by explaining company policies and processes.

o Schedule meetings, send reminders, and organise employee data.

• Example: An employee agent can automatically approve standard leave requests

and update calendars.

Code Agents

• Functions:

o Generate boilerplate code snippets or refactor existing code.

o Assist developers with debugging and testing.

o Provide recommendations for API usage and best practices.

o Automate code review processes for compliance and quality.

• Example: A code agent suggests optimised SQL queries for better performance.

Data Agents

• Functions:

o Analyse data trends and generate reports.

o Automate data cleaning, transformation, and preparation tasks.

o Assist with database queries and visualisations.

o Monitor data pipelines and notify stakeholders of anomalies.

• Example: A data agent identifies sales trends from historical data and predicts

future demand.

Security Agents

• Functions:

o Monitor for security breaches and unusual activity.

o Enforce compliance by validating user permissions and auditing logs.

o Automate incident response workflows and update security protocols.

o Detect and flag phishing attempts or malware.

• Example: A security agent blocks access from suspicious IP addresses and alerts

the admin.

Creative Agents

• Functions:

o Generate content like blog posts, marketing materials, and social media

captions.

o Assist in design tasks by providing suggestions or creating mock-ups.

o Automate video and audio editing processes.

 24

o Ideate and brainstorm new product features or campaigns.

• Example: A creative agent drafts a campaign slogan and designs a matching

poster.

These agents can be customised further to match organisational needs, integrating with

existing workflows to maximize productivity.

• Low-Code Management:

o Users configure processes and set trigger conditions in aevatar Dashboard.

o Agents automatically execute according to event flow once instructed.

The above task‐based orchestration allows G‐agents to operate independently yet coordinate

seamlessly, leveraging each agent’s expertise to handle complex objectives more efficiently.

7.2 Social Media Agents

Telegram/X Adaptation

• Multi-Agent Deployment:

o Deploy multiple specialised agents to handle different aspects of user interaction.

For example:

▪ Support Agent: Answer FAQs and resolve issues.

▪ Marketing Agent: Share promotional content, announcements, and

campaigns.

▪ Community Agent: Facilitate group discussions and engage in user

feedback collection.

o Assign agents to handle specific time zones for 24/7 coverage.

• Communication Channels and Language Support:

o Integrates seamlessly with popular messaging platforms like Telegram, X

(formerly Twitter), Facebook Messenger, WhatsApp, and WeChat.

 25

o Supports multilingual communication using real-time language translation to

engage with users worldwide.

o Customises responses based on regional dialects, cultural nuances, and

preferences.

7.3 Industry Agents in Blockchain, Finance, Manufacturing

1. Blockchain Agents

• Smart Contract Analysis Agents:

o Fetching and Parsing:

▪ Automatically fetch smart contract texts from blockchain networks (e.g.,

Ethereum, Solana, Ton, aelf).

▪ Parse contracts to understand logic and identify vulnerabilities using

advanced NLP models.

o Risk Detection:

▪ Perform comprehensive static and dynamic code analysis to identify

potential security risks like reentrancy, overflow, or access control issues.

▪ Compare contracts against known patterns of vulnerabilities and flag

anomalies.

o Anomaly Alert Agents:

▪ Push real-time alerts to operational agents or dashboards if anomalies,

bugs, or unauthorised changes are detected.

▪ Integrate with security agents to automatically initiate remediation steps,

such as freezing contract actions.

• Cross-Chain Operation Agents:

o Monitor and validate cross-chain transactions to ensure interoperability.

o Track chain height, transaction integrity, and synchronisation across multiple

blockchain environments.

• Tokenomics Monitoring Agents:

o Track token supply, demand, and liquidity across exchanges.

o Alert stakeholders of deviations or risks, such as inflation, imbalance, or

insufficient liquidity.

2. Finance Agents

• Fraud Detection Agents:

o Monitor and analyse real-time financial transactions to identify fraud (e.g., double

spending, unauthorised withdrawals, or account breaches).

o Use machine learning to continuously adapt and improve detection algorithms.

• Portfolio Management Agents:

o Analyse historical and live market data to optimise portfolio allocations.

o Provide personalised investment suggestions based on risk appetite and goals.

o Offer rebalancing strategies in response to market shifts or changing investor

profiles.

• Compliance Agents:

 26

o Automate the tracking of financial activities for AML (Anti-Money Laundering)

and KYC (Know Your Customer) compliance.

o Generate compliance reports for regulators and flag suspicious activities for

review.

• Customer Insight Agents:

o Segment customer profiles and suggest personalised financial products (e.g.,

loans, credit cards, or insurance policies).

o Predict creditworthiness and risk using AI-powered financial modelling.

3. Manufacturing Agents

• IoT Monitoring Agents:

o Continuously monitor IoT sensors on production lines to detect issues like

temperature fluctuations, abnormal vibrations, or energy inefficiencies.

o Generate real-time alerts to maintenance teams for proactive repairs.

• Fault Diagnosis Agents:

o Combine IoT data with LLM capabilities to diagnose machine failures and

recommend corrective actions.

o Cross-reference historical maintenance records and expert data for enhanced

accuracy.

• Production Optimisation Agents:

o Analyse production data to recommend workflow improvements, resource

allocation, and energy optimisation strategies.

o Simulate alternative manufacturing scenarios to support decision-making.

• Supply Chain Agents:

o Track inventory levels and suggest restocking or redistribution of raw materials.

o Monitor supply chain logistics to identify bottlenecks or inefficiencies, ensuring

seamless production flow.

4. Cross-Industry Capabilities

• Data Analysis and Visualisation Agents:

o Aggregate and analyse data across blockchain, finance, and manufacturing

domains.

o Generate insightful, real-time dashboards for stakeholders to monitor key metrics

and performance.

o Provide predictive analytics to help businesses stay ahead of potential risks or

opportunities.

• Decision-Support Agents:

o Assist leadership in making informed decisions by generating actionable

recommendations from data-driven insights.

o Simulate "what-if" scenarios to evaluate the impact of different strategic options.

• Custom Alerts and Notifications:

o Notify stakeholders of critical updates, anomalies, or emergencies through email,

Slack, Telegram, or other preferred channels.

o Enable customisable alert thresholds to prioritise the most critical notifications.

 27

8. The Current AI Framework Landscape

8.1 Comparison: aevatar.ai vs. ElizaOS vs. G.A.M.E

Comparison aevatar.ai ElizaOS G.A.M.E

Key Strength • Easy maintenance

• Supports multiple

LLM per workflow

• Low to no code

builder for users to

get started in

minutes

• Ability to replay

events to analyse

agent's workflow

• Growing feature

set and plugin

integrations

• Full customisation

and control

• Low-code, low

complexity launches

Capabilities • Diverse workflows,

each powered by

different LLMs

working together

for optimal results

• Access to a library

of workflows,

made available

through user's

contribution.

• Ability to duplicate

agents or

workflows easily

• Users can select

their preferred

LLM at the start;

however, all agents

can only

collaborate using

the same language

model in one

workflow

• Users can select their

preferred LLM at the

start; however, all

agents can only

collaborate using the

same language model

in one workflow.

Multi-LLM

Orchestration

Semantic Kernel for multi-

LLM orchestration, suitable

for complex reasoning and

decision-making in any kind

of application

Single-model API

integrations without multi-

LLM automation, lack of

flexibility across

applications

Optimised for natural

language interactions within

virtual worlds and not general

applications

Design Modularisation +

extensibility plug-in +

dynamic cluster

management system

Modular + extensible plugin

system

Modular + environment

agnostic

Target Users Technical and non-technical

builders

Technical builders Non-technical builders

 28

Coding

Language

No code or low code TypeScript/JavaScript Low-code

Scalability • Uses Orleans, a

distributed

framework

combining

microservices and

the Actor model for

scalable and highly

available large-

scale agent

networks

• Containerised

deployment with

Kubernetes for

cross-cloud

capabilities, auto-

scaling, high

availability, and

high concurrency

• Uses Node.js, a

multi-process

architecture but

lacks Orleans’

distributed

programming

model

• Relies on game-

specific backends

like Photon or

SpatialOS for real-

time performance

Use Cases Built for general-purpose,

scalable, multi-domain logic

in industries like blockchain

and finance

Built for smaller web

projects and community-

driven prototyping

Built for gaming and

metaverse scenarios with

tokenomics integration

Cloud Native

& DevOps

Advanced cloud-native

Kubernetes deployment with

robust security through

DevSecOps & GitOps

Focuses on speed but

without extensive

automation and compliance

mechanisms

Focuses on performance but

does not provide

comprehensive cloud-native

tools

DevOps

Maintainability

Agent-as-a-Service

simplifies system oversight

by deploying lightweight

agents. They autonomously

monitor, automate, and

manage operations across

multiple environments.

Supabase offers DevOps

maintainability through its

Backend-as-a-Service

platform, for smooth

deployment

Undetermined - closed source

Code Access Open source Open source Closed source (Blackbox)

Platform

Integrations

• Twitter

• Telegram

• Discord

• Twitter

• Telegram

• Farcaster

• Warpcast

• Discord

• Twitter

• Telegram

• Farcaster

 29

8.2 Technical and Business Value

1. Powerful Multi-Language Model Collaboration

• Seamless Integration of Multiple LLMs:

o Enables the dynamic invocation of different Large Language Models (LLMs)

within a single business process.

o Supports specialised models for different tasks (e.g., GPT for conversational

tasks, domain-specific LLMs for compliance or technical analysis).

o Combines the strengths of multiple LLMs to optimise accuracy and efficiency in

workflows.

• Cost and Performance Optimisation:

o Automatically routes requests to the most cost-effective or high-performance

LLM based on the task requirements.

o Supports hybrid deployments (cloud-based and on-premise models) to ensure

flexibility and cost control.

o Includes fine-tuning mechanisms to optimise LLM behaviour and reduce

dependency on costly proprietary models.

2. Ease of Use

• Low/No-Code Development with aevatar Marketplace:

o Features a drag-and-drop interface for creating and configuring AI agents without

the need for extensive coding knowledge.

o Provides prebuilt templates and workflows for common business processes,

significantly reducing setup time.

o Supports business users to create and modify workflows, reducing reliance on

development teams.

• Accelerated Agent Development and Deployment:

o Shortens development cycles by automating repetitive tasks such as environment

setup, agent training, and deployment.

o Simplifies operations with centralised management for deploying, monitoring,

and maintaining agents.

• Extensive Marketplace Ecosystem:

o Offers a library of pre-built agents, workflows, and integrations with third-party

applications.

o Ensures rapid onboarding and customisation for new business scenarios.

3. High Concurrency and Traceability

• Scalable Architecture with Actor + Event Sourcing:

o Leverages an actor-based system for efficient parallel processing of tens of

thousands of operations.

o Supports horizontal scaling to accommodate growth in user demand or workload

complexity.

 30

o Guarantees system reliability even during peak loads through distributed

architecture and failover mechanisms.

• Replayable and Auditable Interaction Histories:

o Event-sourced architecture ensures that all interactions, decisions, and operations

are logged in detail.

o Provides a complete replay of historical data to reconstruct workflows, debug

issues, or conduct compliance audits.

o Enables granular auditing of agent decisions to enhance transparency and trust.

4. Security and Compliance

• Cloud-Native and DevSecOps-Driven Security:

o Integrates best practices in Cloud-Native Security, combining automated

monitoring, threat detection, and real-time mitigation.

o Embeds security checks and policies throughout the CI/CD pipeline using

DevSecOps principles.

o Ensures secure code development with automated scanning for vulnerabilities and

misconfigurations.

• GitOps for Secure and Consistent Deployments:

o Implements GitOps workflows for version-controlled, automated, and

reproducible deployments.

o Provides rollback mechanisms for recovering from issues or reverting changes

securely.

• Kubernetes-Oriented Automation:

o Automates container orchestration and scaling with Kubernetes, ensuring robust

and efficient deployments.

o Leverages Kubernetes’ role-based access control (RBAC) and network policies to

enforce strict security requirements.

• Compliance-Driven Design:

o Ensures adherence to regulatory standards through automated compliance checks.

o Provides comprehensive reporting and audit tools to satisfy internal and external

compliance requirements.

5. Additional Business Value

• Operational Efficiency:

o Reduces time-to-market for AI-powered solutions by streamlining development

and deployment processes.

o Enables businesses to scale AI capabilities quickly without major investments in

infrastructure or specialised talent.

• Enhanced User Experience:

o Delivers faster, more accurate, and contextually aware responses through

optimised agent workflows.

o Customisable interfaces and workflows adapt to specific business and user needs.

• Future-Proofing Investments:

 31

o Designed to integrate with emerging technologies (e.g., quantum computing,

advanced LLMs, or decentralised AI networks).

o Built with modular and flexible architecture, ensuring adaptability to future

business and technical requirements.

9. Roadmap

9.1 Short-Term Plan

Teams Completed Phase 1 – 2025 Q1 Phase 2 – 2025 Q2

aevatar-

framework

Foundation

 1. Multi-agent

foundational framework

Marketplace

 1. GAgent Marketplace

standard

 2. AI component

Marketplace standard

AI GAgent Upgrade

 1. Support for more LLMs

 2. Memory upgrade

 3. Knowledge base

 4. RAG upgrade

Orchestration

 1. Natural language

generation

 2. Visual workflow panel

GAgent Type Enrichment

 1. System GAgent

 2. Richer social media

components

Deployment

 1. Permission configuration

and auto-scaling

AI GAgent Upgrade

 1. Multi-modal

 2. Knowledge base sharing

 3. Self-feedback

Orchestration Upgrade

 1. Feedback & evaluation

module

GAgent Type Enrichment

 1. aelf chain component

aevatar-

applications

Pumpfun Aevatar Workflow SDK

 1. Permission system

 2. GAgent construction

 3. Workflow creation

Mysterious AI Game

Station 1.0

 1. Agents-as-a-Service

 2. Marketplace

 3. GAgent & Swarms

construction

 4. Dashboard

AI Competition

9.2 Long-Term Plan

Enhanced Vector Retrieval (RAG) Capabilities

• Native support for vector databases.

• Optimisation of massive document chunk retrieval and AI answer generation.

 32

Enhanced Agent Plugin Marketplace

• Launch multi-industry plugin ecosystem.

• Provide plug-and-play agent modules for vertical scenarios like:

o Financial risk control

o Supply chain management

o Healthcare

Service Mesh and Zero Trust Security

• Further deeper service mesh integration.

• Strengthen data encryption, traffic control, and access policies.

 Human Feedback Mechanism

• Enable real-time human feedback training for agents.

• Continuously optimise conversation quality, logical reasoning, and behavioural decisions.

Enhanced Trusted Execution Environments (TEEs)

• Provide robust support for a variety of blockchain plugins, encompassing everything

from on-chain transactions to Trusted Execution Environments (TEEs).

Boundless Agent Collaboration

• Explore interconnection with third-party AI systems and edge computing devices.

• Extend multi-agent collaboration from Cloud Native to IoT or other AI agent platforms.

10. Conclusion

As we approach an environment where multi-model, multi-agent collaboration becomes

mainstream, aevatar.ai, as a pioneer of the next-gen multi-agent AI framework, provides a

cross-platform, cross-language model, low-barrier and highly extensible solution.

By fully utilising the Orleans Actor model, event sourcing, and cloud-native architecture, it

achieves the following key values:

• Comprehensive Multi-Agent Collaboration: Breaking through the limitations of single

model and closed ecosystems, enabling different AI agents to share information and

communicate effectively.

• Visualisation and Low Code: Significantly reducing development and maintenance

barriers, helping users at different levels quickly implement AI agent solutions.

• High Concurrency and Traceability: Distributed Actor and Event Sourcing ensure

stability and auditability in large-scale scenarios.

https://aevatar.ai/

 33

• Security and Scalability: Cloud-native DevSecOps solution flexibly meets industry

customisation needs while ensuring compliance.

Looking ahead, aevatar.ai will continue to iterate and upgrade, building a fully functional and

robust Agent-as-a-Service platform. We aim to bring convenient and powerful AI collaboration

experiences to more industries and individual users.

We would like to invite you, our community, partners, and enterprise users to participate in the

ecosystem's growth and work together to promote the openness and success of AI agent systems.

For further information, please refer to our official documentation, GitHub repository, or contact

our team at developer@aevatar.ai to discuss ways aevatar.ai can best meet your needs.

Disclaimer: This white paper provides an overview of aevatar.ai’s architecture and capabilities.

Feature specifications may evolve; please refer to official releases for the most up-to-date

information.

11. Reference

1. Eliza: A Web3 friendly AI Agent Operating System, 2025, https://arxiv.org/pdf/2501.06781

2. Virtuals Protocol, 2024, https://whitepaper.virtuals.io

3. Kinds.ai, 2024, https://whitepaper.kinds.ai

4. Delysium, 2024, https://delysium.gitbook.io/whitepaper

5. Shafran, I., Cao, Y. et al., 2022, ReAct: Synergizing Reasoning and Acting in Language

Models

6. Wei, J., Wang, X. et al., 2023, Chain-of-Thought Prompting Elicits Reasoning in Large

Language Models

7. Wang, X. et al., 2022, Self-Consistency Improves Chain of Thought Reasoning in Language

Models

8. Diao, S. et al., 2023, Active Prompting with Chain-of-Thought for Large Language Models

9. Zhang, H. et al., 2023, Multimodal Chain-of-Thought Reasoning in Language Models

10. Yao, S. et al., 2023, Tree of Thoughts: Deliberate Problem Solving with Large Language

Models

11. Long, X., 2023, Large Language Model Guided Tree-of-Thought

12. Google, Google Gemini Application

13. Xie, M., 2022, How does in-context learning work? A framework for understanding the

differences from traditional supervised learning

14. Google Research, ScaNN (Scalable Nearest Neighbors)

15. Semantic Kernel, https://learn.microsoft.com/en-us/semantic-kernel

16. LangChain, https://www.langchain.com

17. LangGraph, https://www.langchain.com/langgraph

18. Crewai, https://www.crewai.com

https://aevatar.ai/
https://github.com/aevatarAI
mailto:developer@aevatar.ai
https://aevatar.ai/
https://aevatar.ai/
https://arxiv.org/pdf/2501.06781
https://whitepaper.virtuals.io/
https://whitepaper.kinds.ai/
https://delysium.gitbook.io/whitepaper
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/pdf/2201.11903.pdf
https://arxiv.org/pdf/2201.11903.pdf
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/pdf/2302.12246.pdf
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.08291
http://gemini.google.com/
https://ai.stanford.edu/blog/understanding-incontext/
https://ai.stanford.edu/blog/understanding-incontext/
https://github.com/google-research/google-research/tree/master/scann
https://learn.microsoft.com/en-us/semantic-kernel
https://www.langchain.com/
https://www.langchain.com/langgraph
https://www.crewai.com/

	Abstract
	1. Introduction
	Key Points:

	2. Background & Challenges
	2.1 AI Agent System Isolation
	2.2 Limitations of Single LLM
	2.3 Insufficient Retrieval-Augmented Generation (RAG) Accuracy
	2.4 Lack of Event Tracing and Observability
	2.5 High Deployment and Collaboration Costs

	3. Vision & Goals
	3.1 aevatar Framework
	3.2 aevatar Applications
	3.3 Environment (Web 2 / Web 3)
	3.4 LLMs Integration
	3.5 Data & Messaging
	3.6 Deployment & DevSecOps
	3.7 Multi‐Cloud & Security
	3.8 Putting It All Together
	3.9 aevatar Advantages
	1. Multi-Agent Collaboration
	2. Unified Cross-Model Collaboration
	3. Multi-Agent RAG Architecture
	4. Visualisation and Ease of Use
	5. Security and Scalability

	4. Architecture
	4.1 aevatar Framework
	Design Principles

	4.2 Core Components Overview
	Actor Model
	GAgent
	Event Sourcing
	CQRS (Command Query Responsibility Segregation)
	aevatar Dashboard

	4.3 GAgent Multi-Agent Collaboration Model
	4.4 Multi LLMs Orchestration
	4.5 Cloud-Native Deployment and Security Compliance
	Kubernetes Deployment
	DevSecOps & GitOps
	Security Policies

	5. Technical Implementation Details
	5.1 Orleans Actor Model and Scalability
	5.2 GAgentBase Design and Event-Driven Architecture
	5.4 Observability and Monitoring

	6. Key Features
	6.1 Multi-Model Parallel Processing/Dynamic Switching
	6.2 Advanced Task Orchestration and Collaboration
	6.3 RAG Integration
	6.4 Cross-Platform Extension
	6.5 Developer and Non-Developer Friendly

	7. Use Cases
	7.1 Multi-Agent Collaboration/Automation
	Customer Agents
	Employee Agents
	Code Agents
	Data Agents
	Security Agents
	Creative Agents

	7.2 Social Media Agents
	7.3 Industry Agents in Blockchain, Finance, Manufacturing
	1. Blockchain Agents
	2. Finance Agents
	3. Manufacturing Agents
	4. Cross-Industry Capabilities

	8. The Current AI Framework Landscape
	8.1 Comparison: aevatar.ai vs. ElizaOS vs. G.A.M.E
	8.2 Technical and Business Value
	1. Powerful Multi-Language Model Collaboration
	2. Ease of Use
	3. High Concurrency and Traceability
	4. Security and Compliance
	5. Additional Business Value

	9. Roadmap
	9.1 Short-Term Plan
	9.2 Long-Term Plan
	Enhanced Vector Retrieval (RAG) Capabilities
	Enhanced Agent Plugin Marketplace
	Service Mesh and Zero Trust Security
	Human Feedback Mechanism
	Enhanced Trusted Execution Environments (TEEs)
	Boundless Agent Collaboration

	10. Conclusion
	11. Reference

